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AS DETERMINED BY LONGWAVE EQUATIONS AND A LOW-PASS FILTER 
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ABSTRACT 

The “timewise localized” variational formalism of the numerical variational analysis method is used (1) to  filter 
and suppress unnecessary high-frequency noises contained in initial and forecast fields and (2) to obtain dynamically 
sound initial values in the areas lacking data. A set of nonlinear longwave equations and a low-pass filter minimizing 
local changes are used in this paper as dynamical constraints. Also proposed in this study is a techniquc to assure the 
convergence of a numerical solution of the nonlinear Euler equations by an iterative process. 

Three applications of the method are presented. The first two examples demonstrate that the initial guess in the 
iterative process influences significantly the speed of convergence. The last example is an application to the 500-mb 
analysis of hurricane Dora, 1964, and demonstrates a reasonable analysis in the data-sparse area where the hurricane 
was located a t  1200 GMT on Sept. 8, 1964. 

I. INTRODUCTION 
The study of objective analysis techniques has been one 

of the most important areas of research in meteorology in 
recent years. These methods attempt to construct fields 
of optimized values of meteorological variables at  specified 
grid points based on irregularly distributed observed data. 
These objectively analyzed values may then be used as 
initial data for a numerical prediction of the meteorological 
fields. The objective analysis methods currently used on a 
routine basis follow these steps (Cressman 1959, Gandin 
1965) : transmitting observed data from meteorological 
stations to the computer, decoding the data for the objec- 
tive analysis, interpolating the values from the station 
values a t  the prespecified grid points, matching the inter- 
polated values to prespecified statistical and/or diagnostic 
conditions, and eliminating data that have apparent 
errors and then preparing them for use in the numerical 
prediction. 

Considerable effort in the initial development of objec- 
tive analysis has led to its successful routine operation 
on a daily basis. However, some improvements can be 
made on the interpolation and matching stages because the 
fields analyzed by the conventional objective analysis 
methods are not necessarily consistent with the conditions 
implied in a numericaI prediction model. This inconsist- 
ency becomes more apparent when primitive equations 
are used for prediction; it results in the generation of un- 
desirable high-frequency noises in the forecasted fields. 
If the data are used directly, high-frequency modes, for 
example, a short-period oscillation of motion, will be gen- 
.crated due to the possibility of generating high frequencies 
in prognostic schemes in the course of time integration of 
the prognostic equations. The inconsistency arises pri- 
marily from sparsity and inaccuracy of data, irregularity 
of data distribution, and an unsatisfactory initialization 
process. 

As technology in the area of numerical weather predic- 
tion has progressed over the last two decades, the predic- 
tion models to promote higher accuracy of prediction have 
been including more physical waves that were filtered out 
in the earlier prediction models, namely, the quasi-geo- 
strophic models. The primitive equation models used in 
recent years contain internal and external gravity waves 
that in the quasi-geostrophic models are filtered as “mete- 
orological noise.” Along with this trend in the prediction 
models, proper determination of the initial conditions has 
been recognized as important to suppressing the unneces- 
sary part of the physical waves. Phillips (1960) suggested 
that, theoretically, the initial condition of wind and pres- 
sure fields is determined by the summation of geostrophi- 
cally balanced components and the divergent component 
calculated from the w equation. This suggestion is in agree- 
ment with the numerical result obtained by Hinkelmann 
(1959). Hinkelmann demonstrated, using his five-layer 
primitive equation model, that the high-frequency oscilla- 
tions of the period of about 6-8 hr in the predicted 
w field were suppressed when the initial divergent part of 
the wind was given from the w equation. High-frequency 
oscillation will be filtered out, generally speaking, if the 
initial fields are so constructed that the time derivatives of 
divergence vanish in the initial field : bnq/bt”=O where q is 
divergence and n=1, 2, 3, . . . . The balance equation 
(Charney 1955, Bolin 1955), which has been widely used 
to obtain the initial stream function, is a diagnostic equa- 
tion derived from the primitive equations for a two-di- 
mensional incompressible flow under the above condition 
for It= 1. The condition for both n=l and 2 was used by 
Miyakoda and Moyer (1968) and Nitta and Hovermale 
(1969). Instead of deriving diagnostic equations, they 
directly used the primitive equations to  adjust the initial 
fields by the iterative process of integrating forward and 
backward until the solution satisfies the condition, 
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A different approach to the initial field analysis has 
been taken by the author who introduced the variational 
method to obtain dynamically sound initial fields. He 
showed theoretically that quasi-geostrophically balanced 
fields or always divergent free fields could be ob- 
tained as a solution to the Euler or Euler-Lagrange 
equations (Sasaki 1958). Later, a direct approach to 
filtering high-frequency oscillations was proposed by the 
author (Sasaki 1969a, 1969b, 1970a, 1970bj. The method 
was explained by two simple examples, the linear advec- 
tion equation and the linear diffusion equation used as 
prognostic equations. The basic idea is to use the above 
condition as a low-pass filter in a broader sense by taking 
p, not limited to divergence, as a meteorological parameter 
to  be filtered. Characteristics of filtering high-frequency 
modes by the method are favorable because of the mono- 
tonic shape of the low-pass filter. Continuing study has 
been done by the author in this article and the author 
with Lewis (1970) by considering various nonlinear 
systems of prognostic equations as dynamical constraints 
in numerical variational objective analysis. This article 
describes the method applied to  a case where longwave 
equations are used with quasi-steady state conditions as 
a dynamical constraint. Also, a technique to  obtain a 
converging solution for simultaneous nonlinear Euler 
equations is proposed in this article. Finally, application 
of the method to the data of hurricane Dora, 1964, is 
discussed to show whether or not the method generates 
reasonable fields in the data-sparse areas. 

2. DY NAMICAL CONSTRAINTS 

Two-dimensional barotropic motion in an inviscid, 
incompressible, hydrostatic fluid is considered as a dynam- 
ical constraint. The fluid has a free surface in a middle 
latitude on the earth. Such motion represents longwaves 
or shallow water waves and is described by the following 
set of equations: 

*+u-+v bu bu -- -fv+-=o, aQ 
at ax ay bX 

and 
b a 

at ax bY *+-((Pu) +-(Vv)=O (3) 

where u and v are the horizontal velocity components, 
respectively, in the x (east) and y (north) direction on a 
Cartesian coordinate system; cp is the geopotential defined 
as gh, g and h being the acceleration of gravity and the 
height of the free surface, respectively; and f is the 
Coriolis parameter, assumed constant in this study. 

If fluctuation of the height of the free surface is small 
compared with the constant mean height H ,  the non- 
linear terms cpu and (pv are approximated by Qu and ipv 
where is gH and constant. In  this case, eq (3) is written 

as z+@(a+-)=O* aP au av 
x aY (3' 1 

To filter out high-frequency components of disturbances, 
one uses the following set of conditions: 

(4) 

Each of these conditions represents near-steadiness of the 
corresponding field. The essential characteristics of this 
type of filter were discussed in the author's previous 
paper (1969b). The condition of steadiness of the cp field 
can be applied for eq (3) instead of eq (3'). The set of 
eq ( l ) ,  (2), and (3) satisfies the conservation of the total 
energy: 

zL2 a 'p (u2+v2+(p)du=O (5 )  

where D is the domain of consideration and d w  is the ele- 
ment of domain, wfhile the set of eq ( l ) ,  (2), and (3') 
does not. The conservR tion requires the proper boundary 
condition that does not allow the net total energy flux 
to pass through the entire boundary: 

where S is the entire boundary of the domain L?, ds is the 
segment of the boundary, and vn is the wind component 
normal to  the boundary. The dynamical constraints 
employed in the present study will be ( l ) ,  ( Z ) ,  (3), and 
(4). 

3. GRID SYSTEM 

The grid system used in this study is shown in figure 1. 
The averaged quantities are denoted by (u), (v), ( ~ p ) ~  and 
((P)~. The vari "bles u, (v), and ( ~ p ) ~  are assigned on the same 
grid points; and v, (u) and ((o)~ are on the set of other grid 
points. The average (u) is calculated by taking the arith- 
metic,averages of the four nearest u values around the 
grid point where (u) is assigned. The average (v) is deter- 
mined similarly. The average (cp>= is an arithmetic average 
of the two nearest cp on the x axis a t  the grid point of ( ~ p ) ~ .  

These definitions are expressed using an arbitrary 
variable 4 assigned on the grid points as 

and 

t r , , + f t + l , j + E i . . , + I + E f + l . r + l ,  

(t>= 4 

(7) 

where the subscripts i and j are integers defined in such a 
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FIGURE 1.-Grid system. 

way that i or j increases respectively as x increases or 
y decreases. 

The finite-difference operators, vC, vz, v,, vz, V u ,  and 
vz, which appear in subsequent sections, are defined as 

and 

where A x  and A y  are the grid size in the x and y directions, 
respectively. The subscript n represents the nth time 
level with the time increment being At. The grid system is 
assumed as the same a t  each time level. 

are used under rules 

- -  
The operators vZ, vu, vz, vu, ( >, ( L, and ( >, 

(9) 

Ljvt = --zf'v?I (10) 
where q is also an arbitrary variable, function, or func- 
tional; v represents also vZ, v,, o,, or v,, ( ) may be ( )x 
or ( ),; and Z is a summation over the entire grid points. 
Proof of eq (9) is given in appendix 1 and the proof of eq 
(10) is given in the author's article (19693). The rules 
(9) and (lo), respectively, state that the operator ( ) 

is commutative and that the operation v is not 
commutative. These rules can be applied repeatedly. 

4. VARIATIONAL FORMALISM 

Based on the principle of variational optimality em- 
ployed in the author's previous studies (1958, 1969a, 
1969b)' a variational formalism is made: 

The E and 7 terms represent the natural universal require- 
ment of minimizing differences between the observed and 
analyzed values. If a pressure height observation is not 
available at  a grid point, Z may be taken to be zero. 
However, for assuring convergence of solution of the itera- 
tive process, at such a grid point is taken as an average of 
the surrounding observations, and E is kept the same 
although a small value is desirable for E. The same tech- 
nique is used for wind. This technique is discussed also in 
the author's article (19706). The at  and y t  terms are added 
to satisfy the condition (4) of quasi-steadiness. The ac ,  yU, 
and yo terms are introduced to solve the Euler or Euler- 
Lagrange equations of eq (11) as a boundary value prob- 
lem (Sasaki 1970a) and to assure convergence of the 
solution as will be discussed in section 5. The at, yu, and 
yo terms are rather optional in this formalism and should 
be kept minimal. 

The dynamical constraints represented by eq (l), (2), 
and (3) are written in a finite-difference form using the 
previously described grid system and operators as 

~ l ~ = - ~ ~ z ( ( ' P ) ~ ) - ~ U ( ( ' P ) v ) J  (12) 

vcu=.f(v) -V&- (uVxu+ (v)Vuu> , (13) 

vlv=-f(u)-v~-  ((zc)Vzv+va,v). (14) 

and 

After substitution of eq (12), (13)' and (14) into the terms 
of Vlu, VlvJ and V1p in eq ( l l ) ,  the calculus of variation, 
represented by 6, is now performed on the sum with re- 
spect to u, v, and v. The weights :, ?, a$, and ycremain 
unvaried. This variation led to the three Euler-Lxgrange 
equations (Courant and Hilbert 1953). These equations 
are 
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and (16), and (17) are 

The derivation is given in appendix 2. and 

5. ITERATIVE METHOD 

Solutions of cp, u, and B of the Euler eq (15), (16), and 
(17) may be obtained by an iterative method. Let a guess 
field be written as c p ( v ) ,  ~ ( y ) ,  and ~ ( v ) .  Substitution of them 
into the Euler equations will result in residuals on the 

When considering only those terms given at  a grid point 
and concerned with a variable the same as the major vari- 
able in each residual equation, that is, cp in RQ, etc., the 
(vfl)th values are 

(30) 
right-hand sides of the equations: -Q(~+l)-  ( v ) - R ( v )  

--Q Q lDQl 

and 

(35) 
f’ 9 2  4 

D,=7+Yt.Z+2fft -  AS)^+" 

-( ( v ~ u ( ~ ) ) ~ ~ u ( ~ ) ) -  (V,V‘”’>V~V‘~’]  - y U ~ ’ d y )  =R‘:’. (20) 

In  these equations, the finite time difference terms of the 
vth guess, Vtcp(y), V,U(’) ,  and V t d V ) ,  are equal to the right- 
hand sides of eq (12), (13), and (14) after substitution of 
cp, u, and v by cp(”), u ( ~ ) ,  and dY) as 

where As is an average grid size. As easily seen, this correc- 
tion procedure is the simplest one among those that could 
be ConSkhred. 

6. CONVERGENCE OF SOLUTION 

Convergence of solution is investigated in this section 
(Todd 1962). Finite-difference equations used are linear 
and given in eq (24) through (35). Now, the amplification 
matrix G is defined as 

v t p  = - V z ( ( p ) u ( q  - v y ( ( - Q ( y ) ) 2 ) ( y ) )  , 
V1u(’) = f ( d y ) ) - V Z d u ’  - ( U ( ~ ) ~ ~ U ( ” )  + ( B ~ ~ ~ ) ~ ~ u ~ ’ ” ) ,  

(21) 

(22) 

The residual eq (18), (19), and (20) are nonlinear, but a 
simple correction technique is used to obtain the (v+ 1) th 
guess field. The technique is to  linearize the residual 

the values a t  the grid point where the corrections are to be 
made. TO linearize eq (12) through (17), one assumes that 
the undisturbed field is a motionless fluid with a constant 
depth H and that small perturbations u, B,  and cp are 
superimposed upon the undisturbed field. The linearized 

where A ~ ,  AU, and AB are the differences between the guess 
and true value, 

1 Vl(37) equations and then to collect only the terms that represent ~ ~ ( ~ + i ) =  c p ( Y + i ) -  cp, Au(Y+1) =u(Yfl)-u Av(Yf1) =z)(Y+1)-  

and similar 
are assumed in a 

for ~ ~ ( d ,  A ~ W ,  and A ~ ( ~ ) .  The differences 
harmonic form 

equations that correspond to eq (12), (13), and (14) are 

Vt-Q(Y) =-9(VzU‘’’ +VVB‘”), 

(38) 

(24) 

(25) 

(26) 

The operators Ax, V y ,  and ( ) appearing in eq (24) 
through (29) are replaced by the constants i sin kAs/As, 

and i sin hAs/As, and (cos kAs+cos hAs)/2, respectively, 
where i=G. Finally, the eigenvalues of the amplifi- 
cation matrix G are obtained from the cubic equation 

vtu(y) =f(B‘~)) -Vz(p(~) ,  

VtB(Y)=--f (&))--V&(~). 

The linearized residual equations corresponding to eq (15), AG3 + BG2 + CG +D = 0, (39) 



888 MONTHLY WEATHER REVIEW Vol. 98, No. I 2  

and the criterion of convergence is given by 

IGI 5 1 .  (40) 

Some details of the above mathematical derivation are 
given in appendix 4. 

Figures 2 and 3 are made to illustrate the characteristics 
of /GI for various choices of weights. For convenience, 
the prime terms of nondimensional weights are defined as 

a' 

a P  
aI=$ (2At)', 

I 

y,=% ( 2 ~ l t ) ~ ,  
a, 

a!' 
a; 

ff=- (2As)*, 

I 

yu=%  AS)', 
a, 

and 

where up and a,,, are the average amplitudes of geopotential 
fluctuation and wind velocity, respectively, and are taken 
as ap=gX1OQ m and a,=10 m sec-'. The values of the 
constants that appear in the calculation of IGI are taken as 
g=9.8 m sec-', H= 10 km, f=O:8365X sec-', At=60 
sec, and As=200 km. If At is taken as 10 min, ai and y: 
are increased by 10'. 

Figure 2 is made under the assumptions that the aux- 
iliary terms a', y:, and y: are infinitesima1;defining two 
ratios 

and 

The amplificat'm IC1 is shown as a function of these two 
ratios, namely, WIND/BRESS and DYN/OBS. The 
domain marked by a letter of CONV (convergence) 
where IG/ 5 1 shows the conditions of these ratios to  ob- 
tain a converging solution by  the iterative method de- 
scribed previously. The domain marked by a letter of 
DIV (divergence) where IC/> 1 shows the conditions 
under which no converging solution will be obtained. 
These two domains are divided by a solid curve marked 
by 1. It is interesting to note that convergence of solution 
will be achieved by giving more weight on wind terms than 
pressure terms or less weight on dynamical constraints 
than observational terms. Also, one of the other significant 

characteristics shown in this figure is that the two domains 
are sharply divided, JGI reaching its maximum value 
about 3.0 near the critical curve and remaining uniform 
in the domain of divergence. I n  the domain of convergence, 
similar characteristics are observed. The value of de- 
creases rapidly, moving away from the critical curve, 
except for the region of higher ratio of WIND/PRESS. 

For demonstrating the role of auxiliary low-pass filters 
on convergence, figure 3 is made under the assumptions 
that 

and 

From these conditions, easily seen is the relationship 

Therefore in figure 3, the ratio WIND/PRESS is a 
constant that is 1. In  figure 3, the values of IGI become 
independent with the ratio AUX/OBS as the ratio de- 
creases and vary only with the ratio DYN/OBS. Accord- 
ingly, the condition of IC( in figure 2 for the case where 
the ratio WIND/PRESS=l is similar to  the condition 
in figure 3 where yle ratio Av"x/OBS= ioT3. It is seen also 
from figure 3 that solution converges more easily with a 
higher ratio of AUX/OBS. 

Suppose we plan in the analysis to take the conditions 
WIND/PRESS= 1 and DYN/QBS= 10'. These conditions 
will result in no converging solution if the auxiliary 
terms are taken as infinitesimal as seen from figure 2. 
However, if the auxiliary terms are taken so as to make 
the ratio AUX/OSS greater than 10, we may be able to 
obtain a converging solution as seen from figure 3. 

The above discussion is based on the linearized set of 
equations. In  practice, how'ever, the residual equations 
are nonlinear, and further complications should be 
anticipated. In the following sections, numerical tests 
will be described for solving the nonlinear residual 
equations. 

7. NUMERICAL TESTS 

For testing the method, the observations of the geo- 
potential and the wind components Ti and 7 are assumed 
to be given a t  all grid points, 16x16 points for G, 
15X16pointsforZl and 16X15pointsforT. Forsimplicity, 
a simple harmonic wave expressed by a fluctuation of 
meridional motion is assumed to superimpose upon a 
uniform easterly current. This situation is represented by 
the numerical example 

z=-lQ m sec-l for i =1-15, j=1-16 

5=5 sin 2a(i-1)/15 sin ~(j--1)/14 for i=1-16, j=1-15, 
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DYN/OBS = a:/a' = Y Y Y ' .  

and 
representing the geostrophic wind relationship 

is calculated from the finite-difference equations 

Fi ,  j-l-Fi* j=j2AY';t,, 

assuming Gl1=@. Numerical values for the constants are 
At=5 min, Ax=Ay=Ax=200 km, .f=0.6X10-4 sec-l, 
@=9.8 m sec+'X 10 km. The weights chosen are equivalent 
to  the conditions expressed by WIND/PRESS= 1 .O and 
DYN/OBS=25 in figure 2 that satisfy the convergence 
criterion. The auxiliary terms are initially set to be zero 
and increase whenever the tendency of diverging solution 

5 1  

U- 

FIGURE 4.-Standard deviation u+, of (Vtrp - 2At)  as a function of 
the number of iterations v ,  case (1). 

appears. The convergence of the method is tested for 
two cases: 

1. Initial guess is the observed value, geostrophic, 

2. Initial guess is that U ( ~ ) = V ( ~ ) = ( P ( ~ ) = O  except that 
the observed values, geostrophic, are used for the initial 
guess at  the boundary, 

w u(O)=c, ~ ( 0 ) s  v, and p(O)=?. 

Similarly, do) and (P(O) are given at  the boundary. 
The results of cases (1) and (2) are shown in figures 4 

through 9. A measure of testing the method is to check 
whether or not the solution converges and how closely the 
solution satisfies the steadiness condition (4). The con- 
vergence rate can be seen in these figures in which the 
errors are defined as 

(41) 
U.=[W 1 (vg. 2At)z]'2~ 

'p 1, I 

and 
(43) 

where up, u%, and uv are the standard deviations; N ,  
(=l6Xl6) ,  N,  (=15X16), and N ,  (=16X15) are total 
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0 IO 2 0  30 40 50 60 
U- 

FIGURE 5.-Standard deviation u,, of (Vtu 2At)  as a function of 
the number of iterations Y ,  case (1). 

grid points assigned for each variable; and 2At is multi- 
plied to each time change term for convenience. 

CASE (1) 

The geostrophic wind relationship is assumed for the 
observed values $, G, and ?. The initial guess values ‘ p ( O ) ,  

u(O), and do) are taken to be the same as the observed. 
Figures 4, 5, and 6 represent respectively the variations 
of uq, u, and uv as functions of the number of iterations. 

It is interesting to note that, in the first several steps of 
iteration in the cp and u fields, the initial standard devia- 
tions decrease. However, the initial standard deviations in 
the 21 field increase. From a number of the tests made, 
which were not described in this article, it was found, in 
general, that the standard deviations u,, u,, and uu 
decrease in the first several or a few 10 steps of iteration 
and then increase to a level considerably higher than the 
lowest level of the standard deviations obtained in the 
preceding steps of iteration. This increase is abrupt, as 
clearly seen in figure 4. Similar behavior was also observed 
in the standard deviations of R,, R,, and R,. The reason 
for this increase has not been found. However, it is 
probably due to an unpredicted divergence of solution 
caused by the nonlinearity of the residual equations. 
Another possible reason is the relatively slow convergence 
rate of the Richardson method compared with the other 
method. Also, the correction forms (30)-(35) used in the 
relaxation may be too simple to make the desirable 
convergence. It is apparent, however, that the increase of 

FIGURE 6.-Standard deviation uv of (V,v  s 2At )  as a function of 
the number of iterations Y, case (1). 

the standard deviations is difficult to understand without 
considering the nonlinearity. Due to the nonlinearity, the 
iteration method should be improved on a “trial and error” 
basis because of analytical difficulties involved in nonlinear 
equations. Otherwise, it  is necessary to use the analyzed 
values of ‘p, u, and w a t  the iteration step of the minimum 
standard deviations before they jump to higher values. 

A technique proposed in this study is to  add the auxil- 
iary terms a, yu, and yo to the functional as seen in eq (11). 
The weight of auxiliary terms should be kept minimal. The 
weights a, y,, and yo are increased whenever the tendency 
of divergence appears in the iterative process. These terms 
contribute as a damping factor in the iterative process. 
From the viewpoint of the objective analysis method, the 
technique is optional but was useful, namely by smoothing 
the field, not changing the relative weights between the 
observations and the dynamical constraints, we were able 
to obtain the solution that satisfied the conditions 

(V2(p)2+0, (Vtu)2+0, and (V,V)~+O. 

The results shown in figures 4, 5 ,  and 6 are those in 
which this technique is used to  obtain proper converging 
solutions. In  figure 4, u, starts to  increase a t  the sixth 
iteration step and continues to  increase at  the seventh 
step. After reaching the maximum at the eighth iteration 
step, u, continuously decreases. A similar process is seen 
also in figure 5, except that the minimum occurs at  the 
fourth iteration and the maximum occurs a t  the seventh 
iteration. In  figure 6, the first minimum is at  the first 
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16* are given in table 1 in which, for convenience, the non- 
dimensional auxiliary weights a', y:, and 7: are listed for 
each step of iteration. 

t i  
b' 

CASE (9) 

The only difference in this case from case (1) is that the 

d U ) = O  a t  all interior grid points, except those at  the boundary. 
The iteration continued up to lOd0 steps. Figures 7,  8, and 
9 show the standard deviations for selected portions of the 
iteration steps where significant change occurred in one of 
the standard deviations. Other portions show monotonic 

initial guess of this case is taken as 'p (O)=O,  u(O)=O, and 1 6 ~  

changes. Compared with case (I), slow convergence of 1 6 ~  

Yoshikazu Sasaki 891 
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FIGURE 7.-Standard deviation urp of (Vpp - 2At) as a function of 
the number of iterations Y, case ( 2 ) .  

FIGURE 8.-Standard deviation u,, of (V,u 2At) as a function of 
the number of iterations Y, case (2). 

are necessary to reduce all standard deviations less than 
one-tenth of the initial standard deviation. 

The technique of adding the auxiliary terms in eq (11), 
as employed in this study, is a key to making the solution 
converge; this is seen by comparison of table 1 with table 2. 
Table 2 was made for case (2) in a way similar to  table 1 
for case (1). I n  this comparison, it is clearly noted that the 
poor initial guess in case (2) requires more weight in the 
auxiliary terms of eq (11) than the better initial guess in 
case (1). Use of a good initial guess is important if the 
technique is employed. 

L 
u 
0 '250 260 

w- 

FIGURE 9.-Standard deviation un of (V,v . 2 V t )  i s  a function of 
the number of iterations v, case ( 2 ) .  

8. APPLICATION TO HURRICANE DORA, 1964,"OVER 
DATA-SPARSE AREAS 

Another test of the method was made by analyzing the 
500-mb height and wind data of hurricane Dora at  1200 
GMT on Sept. 8, 1964, when the hurricane was approxi- 
mately at  75' W., 28' N., 300 n.mi. due east of Cape Ken- 

408-301 0 - 70 - 3 
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TABLE 1.-Nondimensionalized weights of self-controlled auxiliary 
terns for case ( 1 )  

TABLE 2.-Nondimensionalized weight of self-controlled auxiliary 
terms for case (6) 

V d Y.' Y *' Y d Yll' Ye' 

0.0 

1.0 
2.0 
" 

' 

0.0 

7.2 
14.4 
21. 6 

0.0 
7.2 

4 

' 

I 

nedy, where upper air data are very sparse. Figure 10 
describes the situation. The map is polar stereographic 
and the map scale factor, m = (1+sin60°)/(l+sin9) 
where @ is latitude, is multiplied to the space derivative 
terms in the equations used in the analysis, thaf is, 
V,cp4rnVzcp, etc. The stations where the 500-mb data were 
available are marked with dots. In this test, only the 
observations in the coastal area were used. Analysis by 
hiding some station observations makes it convenient to 
compare the analysis results with the observed values a t  
the stations where data were not used. Most inland 
station data were not used. The grid system used for the 
analysis is a fine-mesh grid of the National Meteorological 
Center (NMC) grid. The grid distance is equivalent to 
one-quarter of the NMC grid size. The total number 
of grid points is 29x23, I=1-29 and J=1-23. The 
outputs of the results were made only for the region 
bounded by the heavy solid lines, that is, 1=10-25 and 
J=5-20. The cp, u, and variables are assigned on the 
grid points as shown in figure 1 and also in the lower left 
portion of figure 10 where P represents cp. 

The time increment At used is 1 min. The height is the 
anomaly of the average 500-mb height (5.9 km). The 
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93.6 
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weights used are 
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' 
, 

1 

' 

;=1.0/(200 m2 sec-2), cy,=EAP 

y=1.0/(10 m sec-1)2, y,=TAt'. 
and - 
The values 200 m2 586-2 and 10 m sec-1 represent the 
assumed amplitudes of geopo tential anomaly and wind 
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i -  

FIGURE 10.-Grid system and upper air stations used for objective 
analysis; the output is made only for the area indicated by the 
lieavy line. 

speed. The geopotential anomaly is equivalent to a height 
anomaly of approximately 20 m because g is 9.8 m sec-'. 
The height value and wind speed are of the same order 
as the analyzed ones (figs. 14, 15, and 16). Therefore, 
it will mean that the weights on wind terms are nearly 
the same as the weights given on the height terms in the 
equation of variation (1 1). This set of weights is the same 
as the tests in section 7. However, a major difference is 
given in the sets of input data, that is, the data in section 
7 represent large scale only, and the data in section 8 
are those affected by a systematic smaller scale (hurricane). 
Although high-frequency disturbances are filtered out by 
the dynamical constraints of vanishing Vtp ,  V tu ,  and Vtv, 
low-frequency patterns affected by the hurricane, such as 
divergence, may remain. In other words, the dynamical 
constraints on the wind velocity components described in 
(4), that is V t u a O  and V,vGO, are better satisfied than 
the constraint,' V,cp G O .  Indeed, this expectation is 
clearly demonstrated in figures 11, 12, and 13. In  these 
figures, the ordinate represents the number of iterations, 
and the abscissa indicates the standard deviation of Vtp ,  
V,u, and Vtv calculated over the entire grid points. All of 
these standard deviations are lessened as the number of 
iterations increases due to the proposed self-controlled 
convergence technique. After 100 iterations, the standard 
deviation of V , q ,  uq decreases to half of the initial value 
(fig. 11) while the standard deviations of V,u and Vtv, 
u,, and uo, respectively, decrease to  about 2 percent of the 
initial values. Therefore, a t  the end of iteration, the above 
set of weights does still allow certain magnitudes of 
divergence. The divergence pattern is given in figure 17 
where the order of magnitude of divergence sec-') 
seems to be reasonable. 

V-  

FIGURE 11.-Standard deviation U~ of (Vrp  - 2At) as a function of 
the number of iterations v for the 500-mb data of hurricane 
Dora a t  1200 GMT on Sept. 8, 1964. 

v -  

FIGURE 12.-Standard deviation u,, of (V,u -2A1) as a function of the 
number of iterations Y for the 500-mb data of hurricane Dora a t  
1200 GMT on Sept. 8, 1964. 

Figure 14 shows the analyzed height anomaly in meters. 
Other than the area near the hurricane center, the height 
pattern and its magnitudes are reasonably in agreement 
with the subjective analysis. Near the hurricane, the 
hurricane center obtained from the analysis and marked 
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Y- 

i- 
FIGURE 13.-Standard deviation uv of (V tv .2At )  as a function of the 

number of iterations v for the 500-mb data of hurricane Dora a t  
1200 GMT on Sept, 8, 1964. 

FIGURE 15.-The u component of wind for the 500-mb surface of 
hurricane Dora a t  1200 GMT on Sept. 8, 1964, by the numerical 
variational objective analysis method. 

FIGURE 14.-Analyzed height pattern (units in meters) of the 500- 
mb pressure surface of hurricane Dora a t  1200 GMT on Sept. 8, 
1964, by the numerical variational objective analysis method. 

by a dot in figures 14 through 17 seems to be a few hun- 
dred kilometers to the southwest compared with the 
offic,ially reported position marked by a winged dot. 
Furthermore, the analysis shows two Low centers on the 
500-mb surface, but one Low center seems more reason- 
able. These results are undesirable and seem to be caused 

by the sparseness of data. Also, the nonuniform station 
density, higher westward and lower eastward, seems to 
result in the displacement of the analyzed hurricane 
center, westward. 

Figures 15 and 16 show the u and v patterns, respec- 
tively. The magnitudes of u and v are not as great as one 
may expect near the hurricane on the 500-mb surface. 
However, they are reasonable in other areas. It is also 
interesting to note that stronger wind velocity components 
appear in the northwest quadrant than in other quadrants. 
This result is not verifiable, either due to data sparseness 
or for physical reasons. Figure 17 represents the diver- 
gence pattern calculated from the analyzed u and v. An 
interesting result is that a quadruple structure appeared 
in the hurricane area and a double system of divergence 
in the northwestern quadrant is stronger than the other 
one. 

National Hurricane Research Laboratory ("RL) recon- 
naissance aircraft data and analysis are available a t  three 
levels (9,800 f t ,  11,780 f t ,  and 18,280 ft) on Sept. 8, 1964. 
Unfortunately, the data coverage is too small to compare 
with this study. The above results, however, may be 
compared with the subjective upper air analysis made by 
Sheets (1965). His analysis of the upper air sounding data 
is based on the hypothesis that the hurricane moved in 
the same direction with a constant velocity for the 
period of 1200 GMT on Sept. 7,  1964, through 0000 GMT 
on Sept. 12, 1964. Placing all upper air station data 
available at  that period at  the points relative to  the 
hurricane center, he could generate 137 data points in 
a circular area with a 600-n.mi. radius around the hurri- 
cane center. 
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FIGURE 16.-The v component of wind for the 500-mb surface of 
hurricane Dora at 1200 GMT on Sept. 8, 1964, by the numerical 
variational objective analysis method. 

Because hurricane Dora, 1964, seemed to satisfy the 
hypothesis fairly well, Sheets' analyzed patterns are 
used for comparison with the results of this study. Elonga- 
tion of a Low in a north-south direction is shown in the 
results of those two different analyses. Also, tighter 
contours in the southeastern quadrant are seen in both 
analyses. A two-cell structure does not appear in Sheets' 
analysis on the 500-mb surface, but it appears at  400 mb. 
Higher wind speed in the northwestern quadrant is seen 
in both analyses, and magnitudes of the speed and 
direction are also in good agreement. 

APPENDIX 1, PROOF OF EQUATION (9) 

A proof of eq (9) is as follows: 

+. . .} =C(!b>zCo. 
+ L 1 .  jPt-1, i 

2 

The above proof is for one dimension, but can be ex- 
tended easily for two-dimensional cases. Also, the above 
proof is made only for the interior points where the sym- 
metry of operators concerning a grid point of considera- 
tion is apparent. The symmetry is not valid at  the bound- 
ary, and a separate calculation should be made. It is 
possible, however, to choose a finite-difference form of 
the boundary condition that satisfies eq (9). 

IO 15 20 25 
i- 

FIGURE 17.-Divergence pattern iunits, 10-5 sec-1) calculated from 
the analyzed u and v by the finite-difference form V,u+V,v. 

APPENDIX 2, DERIVATION OF RESIDUAL EQUATIONS 

After performing the first step of the calculus of varia- 
tions on eq (11), we obtain 

6J=2 C { ~ ( P - ~ ) S P + ~ ( ~ - G ) S ~ + ~ ( ~ - ~ ) ~ V + ~ ~ V ~ ~ ( V ~ P )  

f r , v , u 6 ( v t u )  +Yzvtv6(vP) +4VNVZ~P+Vf#@V,~P)  1 * (44) 
i, i 

Taking variations of eq (121, (13), and (14), one may 
write the variations of time change terms 6(V,(p), 6(V,u), 
and 6(Vtv) as 

6(VZ(P) = - [vz ( (P )z~u~  +VU((OU~V) +VZ((6V)ZU) +vu((6dv)l, 
(45) 

6(VIU) =.mJ) -V&- (Vzu - 6u + uVz,6u+ Vuu * (6v)+ (v)sjy6u), 

(46) 
and 
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After using the commutation rules (9) and (lo), the above 
equation becomes 

For satisfying the extremum condition 6J=O for arbitrary 
variations of 6cp, 6u, and 6v, the coefficients of 6cp, 6u, 
and 6v of eq (48) should vanish separately; that leads to 
eq (15), (16), and (17). 

APPENDIX 3, CHARACTERISTIC CONDlTlON 

It is desirable to solve eq (15), (16), and (17) as a 
boundary problem. For checking the possibility, a 
limiting case where At, Ax, and Ay approach zero is 
considered. Also, for simplicity, linearization is used. 
The linearized equations that correspond to eq (12), 
(13), and (14) under the above conditions are 

and 

(49) 

Similarly, the linearized equations corresponding to 
eq (15), (16), and (17) are 

and 

When rearranging the terms in the order of higher 
derivatives, substitution of eq (49), (50), and (51) into 
eq (52), (53), and (54) will lead to the set of equations 

and 

+ ~ J ' v +  T(v- 5) = 0. (57) 

The question of whether or not the above equations can 
be solved as a boundary value problem will be investigated 
by the method of characteristics (Courant and Hilbert 
1962). We consider a line C, .$(x,y)=O, along which the 
first derivatives of solutions cp, u, and v are continuous, 
but the second derivatives may suffer jump discontinuity 
across C. 

By taking another function, q(x,y), orthogonal to E ,  
one may transform the derivatives from the (2, y) plane 
to  the ( 5 ,  v )  plane as 

and 

Similar expressions are given to the other derivatives 
appearing in eq (55), (56), and (57). After substituting 
the above expressions into eq (55), (56), and (57), the 
characteristic condition will be derived from the condition 
that the determinant, elements of which are the coefficients 
of a2cp/at2, a2u/aE2, and d2v/dE2, vanishes SO that these 
se.cond derivatives have no unique solution. The character- 
istic condition is 

A= 

or 

Therefore, the characteristic condition will not be satisfied 
if at/&, atlay, yU and yo do not vanish, 

A f O .  (59) 

The auxiliary terms, especially the yu and yo terms in 
eq ( l l ) ,  may make it possible to solve the Euler eq (15), 
(16), and (17) as a boundary probJem even though the 
auxiliary terms are small. In  practice, the magnitudes of 
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a, yu, and yp are increased whenever the divergence of tively. Using the definition of amplification matrix G as 
solution appears in the iterative process. This increase defined in eq (361, one may rewrite these equations as 
of the magnitude is taken due to nonlinearity of the Euler 

articles (Sasaki 1970a, 19706). 
equations. A similar discussion is given in the author’s (D,G+ali)Ap‘Y’ +~12Au(” )  + a l 3 A ~ ) ( ~ )  =O, (69) 

a21Aqcv’ + (DIG+u~~)Au‘~) + u ~ ~ A v ( Y ) = o ,  (70) 

a31Ap‘”) +U~~AU‘’)+ (DaG+~33)A~(Y)=0 (71) 
APPENDIX 4, CONVERGENCE OF SOLUTION 

Substitution of eq (24) - (26) into (27) ~ ( 2 9 )  leads to  

and 

where 

and 
1 
2 

f - v , A ~ ( ~ ) ) - ~ ~ v ~ A u ( ~ ) = ~ ~ ) ,  (61) 
a13=-y$ - 2i sin kAs . - (cos kAs+cos hAs), 2As 

TA?i(’) +at@V,( -@(V,AU(“’ +V,A?i‘”))+yJ(f(AV‘“’) f 1 
a21=--yt ~ 2 i  sin has - (cos kAs+cos hAs), - v ~ A ~ ” ’ ) - ~ , v ~ A ~ ~ ” =  R r )  (62) 2As 2 

1 a22=-az ~ @’ (2-4 sin2 kAs) + y J 2  a ((cos kAs where Ap(”),  A U ( ~ ) ,  and A d ” )  are defined in eq (37). These 
equations become (2As) 

+COS hAs)’-1)+yu - (sin2 kAs+sin2 hAs-1), [Z- ( ~ , + ~ ) V 2 ] A p ‘ ” ’ + ~ z f V z ( A ~ ‘ Y ) ) - ~ t f V y ( A U ( Y ’ ) = R ~ ) ,  (63) (2As) 

Y ~ ~ V ~ ( A ~ ” ’ )  + (? -a~@~V;+YuV~+ytf~(( >>)Au(”) 

and 

U23=(r, ___ @’ 4 sin kAs sin hAs, 
-CY, @ 2 ~ z ~ , A ~ ( y )  = R t), (64)  AS)^ 

1 
2 

-~tfVz(A~‘v’) - (Y~@~V~V~AU(’)  (?-az@’V; a31=-y$ - f 2i sin kAs . - (cos k&s+cos h&), 2As -~ ,v2+~, f2( (  )))Av‘”’=R,’“. (65) 

Elimination of R‘z , B F ,  and R‘t from eq (63) - (65) and a32=a$ - @’ 4 sin kAs sin hAs, 
eq (30) - (32) leads to  simultaneous recurrence formulas 

D cp A cp (v-I-1)- (r,+4 (v2,+v;+4 (zas>z ) Acpc”) 

(2As)’ 

and 

a33=-a, __ (2-4 sin2 hAs)   AS)^ 
-rtfV,(Au‘”) +~tfvz(AV(”)> =O, (66) 

+yt f” - ((COS kAs+COS h&)’-1). 
y,fv,(Acp(”) +DUAu(’+” 4 

2 4 +[ -at@ (VZ+w)-Yu (v2+w)+%fz From eq (69) -(71), it is shown that the coefficients of 
the cubic eq (39), 

X( (( )) -31 Au(Y)-~t@2~Z~yA?i(”)=Ol (67) 

and are given as 

- YJVz(Apo‘”’) - a@VzVyA~‘y) 

AG3+BC2+ CG+D=O, 

A=D,DuD,, 

where the constant ceofficients D,, D,, and Do are defined D=ul~a22u33+u12ua3u31+ a13a12a22- a31a13a22-a~2a23a11 

represent A C ~ ( ~ ) ,  Au(”), and A?i(*) as given in eq (38), the 
operators V,, V,, and ( ) are replaced by the constants 
i sin kAslAs, i sin hAslAs, and 4 (cos kAsfcos has), respec- 

in eq (33)-(35). When considering a simple harmonic to -(;1.21a12a33. 

The roots of the cubic eq (39) for these complicated 
coefficients were solved by using an electronic computer. 
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